Homework for you

Amplification Essay Writer

Category: Essay

Description

Amplifier Essay Topics To Write About

Amplifier Essay Topics

The objective of this report is to illustrate the entire process of bringing an audio amplifier from a circuit diagram to a finished, working product. The basis of the amplifier will be the LM386 chip and as such, this will be looked at in further detail along with other technical features of the project. Aims… View Article

Portable mobile charger using piezoelectric energy executive summary Alternative energy sources are one of the main focuses in research and development in many aspects in engineering, especially electronic devices. By targeting renewable energy sources, not only will the amount of pollution decrease but also help in preserving the rapidly depleting resources available on Earth. Compared… View Article

Haven't found the Essay You Want?

Get your custom essay sample

For Only $12.90/page

Other articles

Amplification: Definition and Examples

Amplification I. What is Amplification?

Amplification (pronounced am-pl uh -fi- key -sh uh- n) involves extending a sentence or phrase in order to further elaborate, emphasize, or exaggerate certain points of a definition, description, or argument .

Amplification can involve embellishment or technical elaboration. Either way, more information is being added.

II. Examples of Amplification

Here are a few examples of amplification which increases the quality of ordinary sentences:

Imagine you are struggling with a math assignment. You go into a tutoring center to talk to a math tutor.

The assignment was complicated.

In this sentence, necessary information is conveyed: the assignment was complicated. But the tutor will need to know what, specifically, made the assignment complicated in order to help.

The assignment was complicated because it involved numerous steps. I believe I became lost on step three, but I’m not sure. I may have miscalculated here on step four as well. Can you help me?

Through the use of amplification, you have made clear what you are struggling with, and the tutor can now help you.

Imagine you are at a doctor’s office because you have been feeling sick. Your doctor asks, “What brings you here today?”

I think I’m getting sick.

Once again, more information is needed in order to help the doctor understand the problem.

I think I’m getting sick—I’ve been experiencing terrible headaches and drainage, and I’ve just begun to develop a sore throat as well.

Amplification serves to specify with more information and detail.

For a final example, imagine you are attempting to describe just how beautiful a fall day was.

I was overwhelmed with how beautiful a day it was.

This sentence expresses the intended sentiment, but it lacks flowery, descriptive language.

I was overwhelmed with how beautiful an autumn day it was—the leaves were an awe-inspiring palette of deep reds, vibrant oranges, and bright yellows, the wind wafted through the crisp air, and the sun shone brilliantly through puffs of cumulus clouds.

Wow! With amplification, a beautiful fall day can project off of the page, transporting the reader into the experience.

III. The Importance of Using Amplification

Amplification provides more information in order to strengthen an important point in a speech. It serves to exaggerate certain statements which can underline comedic or serious intentions. It emphasizes the persuasive aspects of an argument by elaborating why exactly they should be considered. In creative writing, amplification draws attention to the most compelling, vivid, or thought-provoking sections of a narrative. In general, amplification highlights what is most important.

IV. Examples of Amplification in Literature

Amplification characterizes speakers, vividly illustrates scenes and moments, and describes in-depth what is most important.

For an example of amplification in literature, read the beginning of Nathaniel Hawthorne’s The Scarlet Letter :

It is a little remarkable, that—though disinclined to talk

overmuch of myself and my affairs at the fireside, and to

my personal friends—an autobiographical impulse should

twice in my life have taken possession of me, in addressing

This introduction utilizes amplification. Instead of simply saying he has decided to write an autobiography. the speaker explains it in-depth.

For a second example, read this excerpt from The Twits by Roald Dahl:

If a person has ugly thoughts, it begins to show on the face. And when that person has ugly thoughts every day, every week, every year, the face gets uglier and uglier until you can hardly bear to look at it.

A person who has good thoughts cannot ever be ugly. You can have a wonky nose and a crooked mouth and a double chin and stick-out teeth, but if you have good thoughts it will shine out of your face like sunbeams and you will always look lovely.

Dahl uses elaboration to describe in-depth how an ugly person becomes uglier, and how a beautiful person, despite any physical imperfections, remains beautiful. This is more powerful than simply saying “Ugly thoughts make you ugly, but beautiful thoughts make you beautiful.”

V. Examples of Amplification in Pop Culture

Amplification creates compelling and interesting dialogue and lyrics in movies, television, and song.

For an example of amplification in film, watch this scene from Patch Adams :

Patch Adams (8/10) Movie CLIP – You Treat a Person (1998) HD

When asked if he has been treating patients, Patch Adam makes the claim:

Everyone who comes to the ranch is a patient, yes. And every personwho comes to the ranch is also a doctor.

When asked to elaborate, he uses amplification to define “doctor” in-depth and holistically:

Every person who comes to the ranch is in need of some form of physical or mental help. They’re patients. But also every person who comes to the ranch is in charge of taking care of someone else–whether it’s cooking for them, cleaning them, or even as simple a task as listening. That makes them doctors. I use that term broadly, but is not a doctor someone who helps someone else? When did the term “doctor” get treated with such reverence, as, “Right this way, Doctor Smith”… or, “Excuse me, Dr. Scholl, what wonderful footpads”… or, “Pardon me, Dr. Patterson, but your flatulence has no odor”?

This emotional and down-to-earth description of a doctor is an emotional appeal to the judges in the movie as well as to the audience watching at home.

For a second example, listen to the critic Anton Ego’s speech in the film Ratatouille :

Ratatouille Ego's Review

Ego uses amplification to clearly explain how the world reacts to something new and how the brave critic must defend it. He also elaborates on the unexpected meal and how it changed his preconceptions. To simply say, “The meal challenged my preconceptions” would miss the larger point: Ego realized a great artist can come from anywhere. As the audience knows, Ego is talking about a rat chef. The eloquence of his explanation highlights just how amazing this little chef is.

VI. Related Terms

Like amplification, auxesis involves the accumulation of information. Auxesis is a specific type of amplification in which words are piled on in order of importance, ending with the most important or triumphant part. Here are a few examples of auxesis:

  1. We scored a goal. Then another! Forty minutes later, we were winning four to zero!

In this example, the sentences build in order of goals scored and in excitement over winning the game.

  1. At first, he was a little angry. A few minutes later, his face was red. An hour later, he was fuming!

This example shows an increasingly angry person in increments.

  1. We planned on a brief coffee date, but then we decided to get dinner, too. Hours later, we were still talking and planning on our next date!

This example shows a relationship developing as a brief date is extended and extended.

Congeries is another specific type of amplification in which words are piled on in order to describe something in-depth. Here are a few examples of congeries:

  1. He’s a curly, sweet, blonde, little, tiny, fun, funny puppy.
  2. She was wild and crazy! Bizarre! The most amazing thing! Too much to handle! Wow!
  3. The speech was interesting, compelling, thought-provoking, overwhelming at times, and so very inspiring.

As can be seen in the above examples, congeries piles on the words, oftentimes adjectives, to fully and enthusiastically describe something.

VII. In Closing

Amplification turns the speakers up on what the audience needs to pay attention to and understand. It can be used to carefully explain, slowly elaborate, or expressively describe. Amplification proves that less is not more. More is more!

Literature Review Of Low Noise Amplification Engineering Essay

Literature Review Of Low Noise Amplification Engineering Essay

Published: 23rd March, 2015 Last Edited: 23rd March, 2015

This essay has been submitted by a student. This is not an example of the work written by our professional essay writers.

The main function of low noise amplifier (LNA) in communication system is to amplify very low signals without adding noise. At the same time it must be able to amplify the large signal without introducing any distortions. Hence the goal in designing LNA is normally governed by several objectives. There are the ability to provide high gain which is measured in term of Voltage Gain () or Power Gain (), to attain the minimum noise figure (NF), to reduce nonlinearity and to deliver tolerable matching at the input and output ports. Linearity is measured by two types of characteristics, an Input 1-dB Compression Point (IP1dB) and Input-Referred Third-Order Intercept Point (IIP3). The matching impedance is to meet 50Ω at the input and output, which is measured by input and output reflection coefficient, and respectively. Generally, the goal of low noise amplifier (LNA) design is to achieve simultaneous noise and input matching at any given amount of power dissipation (Nguyen et al. 2004).

2.2 Scattering Parameters

In microwave frequencies, S-parameter refers to the way in which the traveling currents and voltages of a two-port network.

Figure 2.1 Two port network setup to measure S-parameters

From Figure 2.1, a1 and a2 are incident wave at the Port1 and Port2 accordingly. b1 and b2 are reflected wave at Port1 and Port2 respectively. The equations relate the S-parameters with the incident and reflected wave are

refers to the signal reflected at Port1 for the signal incident at Port1 which indicates input return loss

refers to the signal exiting at Port2 for the signal incident at Port1 which indicates the forward power gain

S-parameter convention always refers to the corresponding port first.

refers to a signal exiting at Port2 for an incident signal at Port2 which indicates the output return loss

refers to a signal exiting at Port1 for incident signal at Port2 which indicates reverse isolation.

2.3 Linearity Measures

Linearity of the LNA is very important. Besides to amplify extremely low signal level without adding noise, LNA also take responsibility to amplify the large signal level without any distortion. The most typical measures of linearity are the third-order intercept points IIP3 and 1-dB compression points P1dB. IIP3 and IP1dB are measuring the linearity of the receiver part while OIP3 and OP1dB are measuring the linearity of the transmitter part.

Figure 2.2 P1dB and IIP3

Compression point 1dB is the input signal level that caused the small-signal gain to drop 1dB (E.V.Balashov et al. 2005). At this point, if the signal input power is increase, the gain will further reduced and circuit no longer linear. Figure 2.2 shows the plotting of the output power over the input power. IP1dB is the input power and OP1dB is the output power corresponding to the 1-dB compression point.

When the desired signal frequency is interfered by the strong unwanted signal, it will produce inter-modulation (IM) which caused non-linearity of the LNA. IM can occur when the interference present at the input of the circuit together with the desired signal. Because of the non-linearity of the LNA, the interfering signal will also consists in the sum and difference of frequency terms at output together with the preferred signal and also together with the preferred's signal harmonics. Some of these terms can lie in the desired signal bandwidth consequently can harm the preferred signal.

These products are the sum and difference of multiples of the fundamental signal. Equation below shows the series expansion of multiplying two signals f1 and f2. Notice that the order is characterized by the sum of the fundamental factors. From Jasper;

Pout = a1f1 + a2f2 +a3(f1 ± f2) + a4(f1 ± 2f2) + a5(2f1 ± f2) + a6(2f1 ± 2f2) +. + a∞(∞f1 ± ∞f2) (2.4.0)

a1f1 + a2f2 +a3(f1 ± f2) is a fundamental

a3(f1 ± f2) is a second order

a4(f1 ± 2f2) + a5(2f1 ± f2) is a third order

a6(2f1 ± 2f2) is a fourth order

a∞(∞f1 ± ∞f2) others

many of the spurious signal is far away from the fundamental signal. It will not give any problem. The third order signal is close to the fundamental signal that will cause a distortion to the output. From Figure 2.2, it can be observed the curve for 1dB compression point and third order interception point are linear with different slopes. The curves then will intersect at a point and this intersection is IIP3 (corresponding magnitude when refer to input power axis) and OIP3 (corresponding magnitude when refer to output power axis). IIP3 indicates the maximum input power of an LNA before the third order IM products effect the performance of the circuit. OIP3 represents the maximum output power that LNA can produce before it degrades. A higher IIP3 will give the lower IM products for a given input power. Hence, LNA with the higher the IIP3, will have better linearity.

Inductively Degenerated CS Amplifier

This topology offers resistive input impedance with no participating of resistor. The advantage of this circuit is it does not bring with it the noise of an ordinary resistor. The existence of the resistor will lead to the present of noisy resistance in the signal path and the circuit will suffer noise figure (NF) degradation (Noh, 2009). The topology of inductively degenerated CS LNA is shown in Figure 2.4:

Figure 2.4 Inductively degenerated CS amplifer (Lee, 2001)

Inductively degenerated property can be exploited to provide specified input impedance without degrading the noise performance of the amplifier (Lee, 2001). The small signal model in Figure 2.3.2 below is used to calculate the input impedance. From (Noh, 2009):

Figure 2.4 Small signal model for the inductively-degenerated CS amplifier

Input impedance is a series RLC network with a resistive term that is directly proportional to the inductance value (Lee, 2004). At resonance, the real term in take in. Thus, this degenerated inductor is utilized for input matching. assists to achieve an appropriate input impedance which is normally matched to 50. will resonate with and bring the input frequency to be worked at the operating frequency. At resonance, from (Noh, 2009):

This topology has an advantage of greatest noise performance because it has no resistor in its structure.

2.5 Inductively-degenerated Cascode LNA

Figure 2.3.3 shows the inductively cascode LNA. Transistor 1 is inductively-degenerated common source amplifier while transistor 2 is common gate amplifier and inductors Lg and Ls are used for input impedance matching of the LNA to the 50Ω (Manku, 1998). The advantages of this topology are stated as following:

Figure 2.5 Single-stage open-drain inductively-degenerated CS LNA (Shaeffer & Lee)

The cascode topology combines the high input resistance and large transconductance offered by a CS amplifier with the current-buffering capability and good high-frequency response of a common-gate amplifier (Sedra and Smith, 2004).

Another important advantage is that the cascode able to reduce the effect of M1's gate-to drain capacitance, i.e. the Miller effect (Noh and Zulkifli, 2007). This happen due to the input resistance of is much smaller than output resistance of the CS .

The advantage of the open-drain connection is that Ld with the node capacitance at the drain of M2 will resonate at the operating frequency and provide more band pass filtering. Besides this, a very small voltage drop across Ld due to its series resistance makes this configuration attractive for low power design (Noh, 2009).

The biasing circuit for this LNA is form by which is connected to as a current mirror. Both these transistors ratio will define the current operating in the cascode circuit. Appropriate selection the width of will determine the voltage across gate-source of. is functioning to isolate the signal path from the current mirror. Therefore the input signal will be ac coupled to the LNA input. is not a big concern as long as it is greater than the input impedance of the cascode LNA.

The involvement is such as mention in the previous section before. This degeneration inductor helps the matching at the input stage to be achieved at 50Ω effectively. It also contributes to the LNA's gain. and work together to tune the input to the desired frequency.

Noise factor is define as

SNRin and SNRout are the signal-to-noise ratio at the input and output accordingly. The noise figure (NF) is the common measurement of noise performance.

Noise in MOS

One of the factor that contributes to the total noise in the MOS is the thermal noise,which is resulting from the electrical noise arising from the random of electronics in a conductor. MOS is essentially a voltage-controlled resistor, it demonstrates thermal noise. Another source of noise in MOS device is a distributed gate resistance RG. It can be modelled by a series resistance in the gate circuit and an accompanying white noise generator. The distributed gate resistance is given by (Shaeffer&Lee,1997)

is a sheet resistance, W and L are the total gate width and channel length respectively in the devicen n is the number of gate fingers used to lay out the device. Hence, by interdigitating the device this kind of noise can be reduced.

Figure 2.6: Equivalent circuit for the input stage noise calculations for an inductively-degenerated LNA (Shaeffer & Lee,1997)

Figure 2.7 shows the input stage of the inductively-degenerated cascode LNA. This stage is the major contributor to the total noise of this circuit. From the Figure above, RS, RLg and Rg represent the source resistance, series resistance of Lg and the gate resistance of CMOS device. and are representing the noise source for the source resistance, internal resistance of Lg and Rg accordingly. In this representation, Lg is assumed not contributing anything to the noise of circuit as its inductance is small. Finally is the channel thermal noise of the device. Through the noise figure expression getting from the Figure above, the noise can be reduced by having smaller width device. However,by using a smaller device indirectly the Cgs will also smaller. Therefore to maintain a constant operating frequency, Lg has to be made large. Unfortunately, a higher Lg will increase the noise unless Qind is high. The circuit technique to solve this constraint, Power Constrained Simultaneous Noise and Input Matching (PCSNIM) can be employed.

2.7 Classical noise matching (CNM) techniques LNAs with noise and input matching techniques

In this technique, the LNA is designed for minimum NF by presenting the optimum noise impedance to the given amplifier, which is typically implemented by adding a matching circuit between the source and input of the LNA (Nguyen et al.,2004). There is no degeneration inductor in this circuit. Yet the amplifier can experience a significant mismatch at the input if there is mismatch between input impedance and complex conjugate of the input impedance (Nguyen et al.,2004). As a result, the tradeoff between gain and noise performance is inescapable. Figure 2.7 shows the schematic of CNM cascade LNA and the small signal model which shows the source of noise from the circuit. The CG transistor's effect on the noise and frequency response in this circuit is neglected for simplification as well as parasitic capacitance.

Figure 2.7 (a) The CNM cascode LNA (b) The small-signal model with noise sources of CNM cascode

Mean -squared channel thermal noise current is given by

is the D-S conductance at V

k = Boltzman constant,

T = absolute temperature

Ï’ = 1 at V and 2/3 when the transistor is in saturation. The Ï’ increases at high and and can be more than two in short-channel devices (Nguyen et al.,2004)

Regarding to the channel thermal noise, there will be fluctuation in the channel potential. This fluctuation will be capacitively coupled to the gate terminal which causing a noisy gate current.

The mean-squared gate-induced noise current

Δ is a constant with value of 4/3 in long channel devices (Lee,2001). represents the gate-source capacitance of the input transistor, which is been ignored for simplification. Since the gate-induced noise current has a correlation with the channel noise current, c their relationship is defined as (Lee,2001)

From Nguyen et al. (2004) the noise parameter for the cascode amplifier is expressed as

Optimum noise admittance:

Minimum noise factor:

and =1 for long channel devices. From Figure 2.8.1(b) it can be seen that the input admittance is purely capacitive. By comparing the complex conjugate of this admittance with Yopt equation, it can be seen the Yopt contains a real term which not exist in Yin. Thus, this shows that the input matching and minimum noise figure cannot be simultaneously achieved through this technique.

2.8 Simultaneous Noise Input Matching (SNIM)

In this method, the feedback technique is implemented by using inductor. Feedback techniques are often adopted in designing low noise amplifier in order to shift the optimum noise impedance, to the desired point (Nguyen et al. 2004). Figure 2.8 below shows the schematic of SNIM.

Figure 2.8 (a) The SNIM cascode LNA

This kind of input matching widely used for narrow-band applications and for large transistor with a high power dissipation and high frequency of operation. From the equation (2.8.3), problem can occur if the size of the transistor is small, giving low gm and Cgs (Darabi & Abidi,2000). This is also makes SNIM topology not suitable for circuits requiring low power consumption and device having small transition angular frequency. If the circuit operates under these conditions, the minimum noise factor will be higher than the Fmin of the typical CS amplifier. Therefore the implementation of SNIM will be inadequate. From Nguyen et al.,(2004)

Equation 2.8.7 shows there is real term in Zin equation. The amendment to the circuit that includes Ls in the cascode will be very significant to bring Zin close to .

Simultaneous noise and input matching will be possible with these conditions (Nguyen et al.,2004)

With the SNIM topology, the simultaneous noise and input matching would be achieved as long as the Equations 2.8.9,2.8.10 and 2.8.31 are fulfilled and Equations 2.8.5 to 2.8.7 are valid. However, from equation Zopt, the operating frequency is low or/and when the size of the device is small, the real part of Zopto will be high. With the certain amount of. the increased real part of Zopto due to the reduction in size will involve a large Ls to fulfill Zopt=Zin*. There will be an issue if Ls is made larger than a certain value that leads to the expression of Fmin=Fmino becomes inacceptable. Hence, the utilizing of SNIM is undeserving.

2.9 PCNO technique

In this technique, both gain and noise matching can be achieved simultaneously at any specified power dissipation. It can be realized by appropriate selection of Ls at any given Cgs. With the fixed drain current, there is available the transistor width that can have low NF result. The width of an optimum device is (Lee,2001,2004):

is the quality factor of LNA's input circuit that leads to the power-constrained minimum noise figure (Lee,2001,2004) It is defined as:

Where |c|=0.395 and

Mentioning by Lee (2004), a more exact analysis discovers that the optimum value is normally closer to 4.5 for 0.35 µm process that was realized on Lee's design. However, the noise figure is insensitive to value of between 3.5 and 5.5 as the noise figure is only change by 0.1 dB (Lee,2001). For 0.18 µm process, the noise contours that were plotted shows that for a fixed NF, a variation of Qs from 3.5 to 4.5 will result in constant power dissipation(Noh, January 2009).

With a device that has width. the noise figure obtained within the power constraint is (Lee,2001,2004):

2.10 PCSNIM LNA

The last noise and input matching technique is PCSNIM. This technique allows simultaneous noise and input matching at low power implementations. SNIM technique does not permit this. In PCSNIM, the additional Cex is placed in parallel with Cgs. Through this technique, the noise and input matching still can be achieved even the transistor is small. It can be done by manipulating the value of Cex. the schematic and small signal model with noise sources that represents the PCSNIM topology is shown in Figure 2.10

Figure 2.10 (a) The PCSNIM cascode LNA with additional capacitor across the input transistor. (b) The small signal model with noise sources of the PCSNIM LNA (Nguyen,2003)

From the expression getting from small signal circuit, Cex can be manipulating to maintain optimum impedance without having to increase Ls.

2.11 PCSNIM with output buffer

This technique is used to tackle an output matching at the output stage. The employment of LC circuit is replaced with an output buffer. Instead of using L-C network that requires large space due to the inductors is huge passives, there are two capacitors and transistors with a resistor will take place to perform the task. Figure 2.11 shows the PCSNIM with output buffer LNA.

Figure 2.11 The modified PCSNIM with output buffer LNA

A common-drain transistor is used to perform as the buffer, shown as M4. M5 is operating as current-source. Ld is to resonate with Cd, Cgs_M4,C0,Cgd_M5 and the bondpad to provide tuning at the 2.14GHz. Cc1 is the coupling capacitor that will isolate the biasing of the buffer from the cascode. To perform the function, the large capacitor is needed. Ro is to isolate the signal path from the current mirror, same function to R2.

The transistor M2 has a width of half of the width of M1. In term of linearity performance, M2 has more influenced as compared to M1. Therefore, if the linearity of the LNA needs to be boosted, the M2 should be the one to be modified. From the study performed by Guo&Huang, it was discovered that the IIP3 of M2 improves with the increase of DC biasing of M2. By increasing the supply voltage, the DC biasing if this transistor also will increase but indirectly it will increase the total power consumption of the whole circuit. One of the ways out is to increase the DC bias of M2 by optimizing the width at a suitable bias voltage. This method can be considered to ensure it does not affect the total power consumption of the whole circuit as well as good noise performance.

E.V.BALASHOV, D.PASQUET2, A.S.KOROTKOV, E.BOURDELZ & F.GIANNINI (2005) Automatization of Compression Point 1 dB (CP 1 dB) and Input 3rd Order Intercept Point (IIP3) Measurements Using LabVIEW Platform

LEE, T. H. (2001) The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press.

LEE, T. H. (2004) The Design of CMOS Radio-Frequency Ingtegrated Circuits, cambridge university press.

MANKU, E. A.-A. A. T. (1998) A LOW VOLTAGE DESIGN TECHNIQUE FOR LOW NOISE RF

NOH, N. B. M. (2009) Development of Inductively-degenerated LNA for W-CDMA Application utilizing 0.18 μm RFCMOS Technology.

NOH, N. B. M. (January 2009) Development of Inductively-degenerated LNA for W-CDMA Application utilizing 0.18 μm RFCMOS Technology.

NOH, N. M. & ZULKIFLI, T. Z. A. (2007) Design, Simulation and Measurement Analysis on the Sparameters

of an Inductively-degenerated Common-source Opendrain

Cascode Low Noise Amplifier. IEEE International Workshop on Radio-Frequency Integration Technology. Singapore.

SEDRA, A. S. & SMITH, K. C. (2004) Microelectronics Circuit, Oxford University Press.

Essay Writing Service

Fully referenced, delivered on time, Essay Writing Service.

Assignment Writing Service

Everything we do is focussed on writing the best possible assignment for your exact requirements

Marking Service

Our Marking Service will help you pick out the areas of your work that need improvement.

FREE Reference Generators

Tools to help you with the creation of academic references in a number of styles.

FREE Help Guides

Everything you need to know during your studies

Place an order now

Our experts are waiting to help you with your essay

Our experts can help you with your essay question Request Removal

If you are the original writer of this essay and no longer wish to have the essay published on the UK Essays website then please click on the link below to request removal:

More from UK Essays Invest in your future today

Copyright © 2003 - 2017 - UK Essays is a trading name of All Answers Ltd, a company registered in England and Wales. Company Registration No: 4964706. VAT Registration No: 842417633. Registered Data Controller No: Z1821391. Registered office: Venture House, Cross Street, Arnold, Nottingham, Nottinghamshire, NG5 7PJ.